Hydrogeologic Study of the Mimbres Basin Aquifer System - A Transboundary Multi-use Aquifer

(Related to Urban Areas, Agriculture, and Open Space)

Luke Sprecker, Chris Christales Geoffrey Rawling, Barry Hibbs

California State University, Los Angeles New Mexico Institute of Mining and Technology

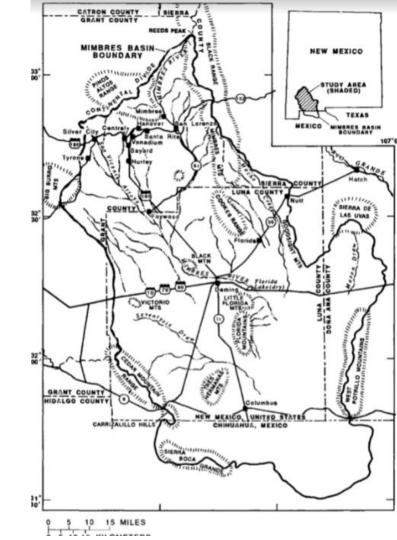
ABOUT ME

OVERVIEW

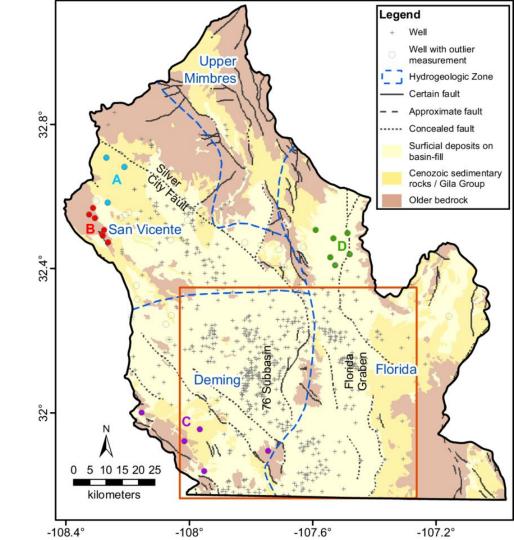
- Description of the Mimbres Basin
- Purpose and Research Objectives
- Sampling & Collection Methods
- Parameters Measured
- Results
- Impact & Importance
- Future Research

STUDY AREA - MIMBRES BASIN

- Interconnected group of geohydrologic subbasins that cover about 13,300 km²
 - Includes part of United States and Mexico
- Represents a wide array of land use/land cover
 - Forests (in higher elevations in the north)
 - Rangeland (accounts for majority of the area)
 - Lowlands (mix of irrigated farmland, rangeland, and alkali-flats)
 - Irrigated cropland (mainly located south of Deming along the Mimbres River. Crops are chile, cotton, and small grains.)


MOTIVATION

- Use of Environmental Isotopes for regional analysis (never before done in this area)
- Provides new and updated groundwater data for a growing urban and existing agriculture area shared by the United States and Mexico
- 5-year study using major inorganic constituents and trace elements along with the environmental isotopes


PURPOSE OF RESEARCH

- Perform a hydrogeologic/isotopic/ hydrochemical study of the Transboundary Mimbres Basin Aquifer System
 - This large binational aquifer system lacks isotopic and specialized isotopic data on a regional scale
 - Investigate ways to fill this data vacuum

RESEARCH OBJECTIVES

- Age-date groundwater
- Confirm modern groundwater flowpaths and map out possible paleo-groundwater flowpaths
- Map out areas of modern groundwater recharge
- Determine areas where pluvial groundwater is in storage in aquifer sub-basins
- Determine mechanisms of groundwater salinization

METHODS - PRECIPITATION COLLECTORS AND WELL SAMPLES

PRECIPITATION COLLECTORS

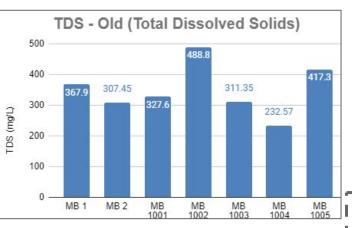
 Simple, inexpensive devices designed to collect rainfall at a given location.

 Every three months, the collection bottle is removed and returned to the lab where a stable isotope sample of the rainfall is collected

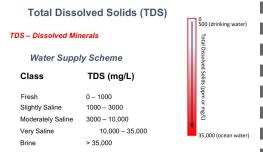
METHODS USED TO COLLECT WELL SAMPLES

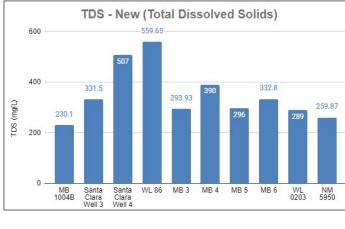
PARAMETERS MEASURED

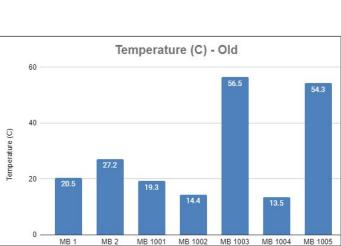
(Index Field Parameters) pH, Conductivity,
Temperature, Dissolved Oxygen, and Oxidation
Reduction Potential - measured at the
wellhead/stream

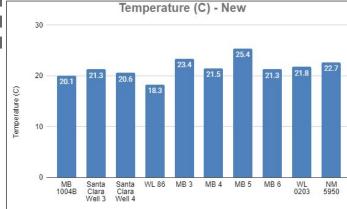

• General Minerals (example: Chloride, Sodium)

Trace Elements (Large suite of trace elements - example: Arsenic, Selenium, Lithium, and Chromium)

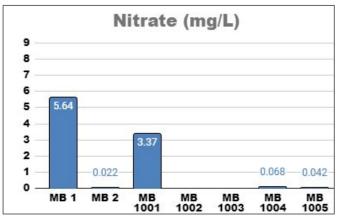

 Environmental Isotopes (Carbon 14, Tritium, and Stable Isotopes of 0, H, C, S.)

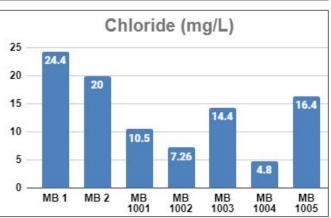


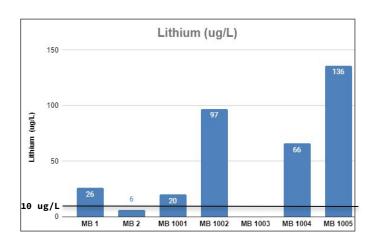

Multi parameter sonde

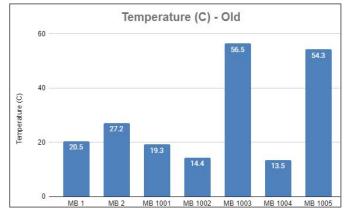


TOTAL DISSOLVED SOLIDS (TDS)

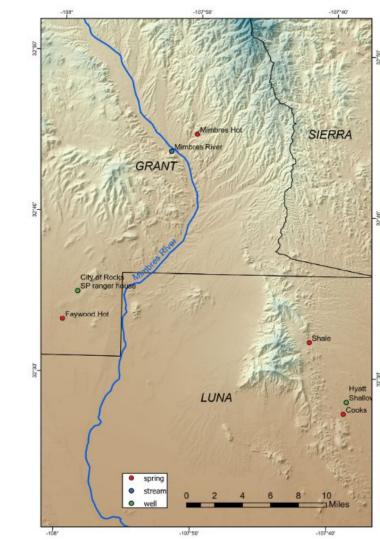





NITRATE, CHLORIDE, AND LITHIUM



- Nitrate: Standard is 10 mg/L
- Chloride: Standard is 250 mg/L



RESULTS

• TDS - All samples within the range of "Fresh" (0-1000 mg/L)

 Nitrate and Chloride - All samples below the EPA standard

• Lithium - All but one sample is under the EPA "health reference level"

RESEARCH IMPACT & IMPORTANCE

 Accurate data regarding well water composition is essential in transboundary, multi-use aquifers like Mimbres

 Communities rely on well water for agriculture, livestock, domestic use, and drinking water

• TDS - High salinity creates negative outcomes

 Year-one baseline data informs the next phase of studies of aquifers and salinity evolution

FUTURE RESEARCH

- Continuation of this five-year study to cover a range of isotopic/hydrochemical analysis, while providing a formative contribution to our understanding of transboundary Mimbres Basin Aquifer System.
- Projects will include at least 4 more REEU students & continue each summer for 4 years.
- Subsequent journal publications and report to area stakeholders.

Figure 4-9. Map for the Mimbres Basin, and associated basins, showing sulfate concentrations in water wells color coded by range (source of data: U.S. Geological Survey; Comission Nacional Del Agua; Instituto Nacional de Estadística, Geografía e Informatica).

IMPACT OF THE INTERNSHIP

ACKNOWLEDGMENTS

- USDA NIFA REEU Grant
- Dr. Barry Hibbs
- Dr. Geoffrey Rawlings
- Chris Christales

QUESTIONS?

